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ARTICLE

Mutations in Cardiac T-Box Factor Gene TBX20 Are Associated
with Diverse Cardiac Pathologies, Including Defects of Septation
and Valvulogenesis and Cardiomyopathy
Edwin P. Kirk,* Margaret Sunde,* Mauro W. Costa, Scott A. Rankin, Orit Wolstein,
M. Leticia Castro, Tanya L. Butler, Changbaig Hyun, Guanglan Guo, Robyn Otway, Joel P. Mackay,
Leigh B. Waddell, Andrew D. Cole, Christopher Hayward, Anne Keogh, Peter Macdonald,
Lyn Griffiths, Diane Fatkin, Gary F. Sholler, Aaron M. Zorn, Michael P. Feneley,
David S. Winlaw, and Richard P. Harvey

The T-box family transcription factor gene TBX20 acts in a conserved regulatory network, guiding heart formation and
patterning in diverse species. Mouse Tbx20 is expressed in cardiac progenitor cells, differentiating cardiomyocytes, and
developing valvular tissue, and its deletion or RNA interference–mediated knockdown is catastrophic for heart develop-
ment. TBX20 interacts physically, functionally, and genetically with other cardiac transcription factors, including NKX2-
5, GATA4, and TBX5, mutations of which cause congenital heart disease (CHD). Here, we report nonsense (Q195X) and
missense (I152M) germline mutations within the T-box DNA-binding domain of human TBX20 that were associated
with a family history of CHD and a complex spectrum of developmental anomalies, including defects in septation,
chamber growth, and valvulogenesis. Biophysical characterization of wild-type and mutant proteins indicated how the
missense mutation disrupts the structure and function of the TBX20 T-box. Dilated cardiomyopathy was a feature of the
TBX20 mutant phenotype in humans and mice, suggesting that mutations in developmental transcription factors can
provide a sensitized template for adult-onset heart disease. Our findings are the first to link TBX20 mutations to human
pathology. They provide insights into how mutation of different genes in an interactive regulatory circuit lead to diverse
clinical phenotypes, with implications for diagnosis, genetic screening, and patient follow-up.
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Structural malformations of the heart (congenital heart dis-
ease [CHD]) are extremely common, present in nearly 1
in 100 live births and 1 in 10 stillborns. Treatment of CHD
often involves highly invasive surgery in childhood, con-
ferring a major economic burden on health resources and
a life-long emotional burden for affected individuals and
families. A subset of CHD is familial, and, in some cases,
causative genes have been identified, most encoding car-
diac transcription factors including NKX2-5 (MIM 600584),
GATA4 (MIM 600576), and TBX5 (MIM 601620).1 These
factors are part of a conserved regulatory network that
controls cardiogenesis in species as diverse as man and
insects.2,3 However, dominant mutations in cardiac devel-
opmental transcription factors account thus far for only
a minority of familial cases and for few isolated cases of
CHD.4,5 Therefore, a major imperative in this field remains
to dissect cardiac developmental pathways in detail and

to understand how mutations in genes encoding the var-
ious components of these pathways cause CHD at the ge-
netic and mechanistic levels.

T-box transcription factors are characterized by the pres-
ence of a highly conserved, 180-aa, sequence-specific DNA-
binding domain termed the “T-box.” These factors act as
transcriptional activators and repressors and are known
to function in a combinatorial and hierarchical fashion
in many developmental processes.6 At least seven mem-
bers of the T-box gene family are expressed in the devel-
oping heart in humans and vertebrate models.6 TBX1 (MIM
602054) is deleted in 22q11 deletion syndrome (MIM
188400 and 192430), the most common genetic deletion
syndrome in humans, and has emerged as the leading
candidate for causation of the complex cardiac and pha-
ryngeal malformations that constitute the syndrome.7

TBX1 has multiple roles in pharyngeal development, in-
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cluding, in mouse, regulation of the Fgf8 gene (GenBank
accession number NM_010205), involved in maintenance
and growth of neural crest cells and an anterior heart pro-
genitor population (the anterior second heart field) that
contributes cardiomyocytes, smooth muscle, and endo-
thelial cells to the outflow tract.6,8 Mutations in TBX5
cause the rare autosomal dominant Holt-Oram syndrome
(MIM 142900), characterized by congenital forelimb and
cardiac malformations, the latter including atrial septal
defect (ASD), ventricular septal defect (VSD), tetralogy of
Fallot, hypoplastic left heart, and conduction abnormal-
ities.9,10 Tbx2 (GenBank accession number NM_009324),
Tbx3 (GenBank accession numbers NM_198052 and
NM_011535), and Tbx18 (GenBank accession number
NM_023814) are involved in cardiac chamber and in-
flow-tract development, respectively, in mice,6,11 and, al-
though TBX3 (MIM 601620) is mutated in ulnar-mam-
mary syndrome,12 these genes have not thus far been
implicated in CHD in humans.

TBX20 (MIM 606061) is an ancient member of the T-
box superfamily related to TBX1, and the expression and
function of the Tbx20 gene (GenBank accession number
NM_020496) has recently been characterized in a number
of models.6,13–15 In mice, Tbx20 is expressed in cardiac pro-
genitor cells, as well as in the developing myocardium and
endothelial cells associated with endocardial cushions, the
precursor structures for the cardiac valves and the atrio-
ventricular septum.16 Tbx20 carries strong transcriptional
activation and repression domains, and it physically or
genetically interacts with other cardiac developmental
transcription factors, including Nkx2-5 (GenBank acces-
sion number NM_008700), Gata4 (GenBank accession
number DQ436915), Gata5 (GenBank accession number
NM_008093), and Tbx5 (GenBank accession number NM_
011537).14,16 Loss of Tbx20 in mice is catastrophic for heart
development. Homozygous mutants show a rudimentary
heart that is poorly proliferative and lacks chamber my-
ocardium and in which expression of the early transcrip-
tion factor network is compromised.17–19 Tbx20 appears to
directly repress another T-box gene, Tbx2, which is itself
a repressor involved in allocation of chamber and non-
chamber myocardium in the early heart tube. A partial
knockdown of Tbx20 expression with RNA interference
(RNAi) technology20 and analysis of Tbx20 function with
use of a chick atrioventricular canal explant system21 have
revealed later functions for Tbx20 in atrioventricular valve
development. Adult heterozygous Tbx20-knockout mice
show mild atrial septal abnormalities, including an in-
creased prevalence of patent foramen ovale (PFO) and aneu-
rysmal atrial septum primum, as well as mild dilated car-
diomyopathy (DCM) and a genetic predisposition to frank
ASD.17

The essential roles of Tbx20 in heart development and
adult heart function in mice raise the possibility that mu-
tations in human TBX20 (Ensembl Genome Browser [chro-
mosome 7p14.2] accession number ENSG00000164532)
contribute to CHD. We therefore screened 352 CHD-af-

fected probands for TBX20 mutations and found one mis-
sense and one nonsense mutation in probands with a fam-
ily history of CHD. Mutations lay within exons encoding
the T-box DNA-binding domain, and we provide struc-
tural, functional, and biophysical evidence of their dele-
terious action. TBX20 mutations were associated with a
complex spectrum of developmental and functional ab-
normalities, including defects in septation, valvulogene-
sis, and chamber growth and cardiomyopathy. The dis-
covery of CHD mutations in an additional gene function-
ing in the conserved cardiac regulatory network highlights
the importance of this network in development and evo-
lution and as a molecular target in cardiac pathology.

Material and Methods
Patients and Clinical Details

Patients with CHD were unrelated individuals recruited without
reference to family history during 2000–2006 from St. Vincent’s
Hospital, Sydney Children’s Hospital, and The Children’s Hos-
pital at Westmead, Sydney. Clinical evaluation by a cardiologist
included medical history, 12-lead electrocardiography and trans-
thoracic echocardiography, and/or transesophageal echocardiog-
raphy (TEE). Diagnostic categorization of patients with CHD was
made according to their most significant structural lesion. For
example, a patient with an ASD and a left superior vena cava
(SVC) would be categorized as having “ASD with other CHD” (see
table 1). A patient with transposition of the great arteries and an
ASD would be classified as having “other CHD,” since the trans-
position may represent more significant pathology. Ethnicity was
determined by questionnaire. Informed written consent was ob-
tained from all recruited patients. Study protocols were approved
by the human research ethics committees of participating hos-
pitals. The majority of white control individuals were unrelated
anonymized individuals for whom atrial and ventricular septal
status was undetermined. However, this group also included 1100
“TEE controls,” who were unrelated individuals recruited from
St. Vincent’s Hospital for whom TEE was performed for a number
of indications and for whom ASD, VSD, and PFO were specifically
excluded using intravenous saline contrast injection during the
strain and release phases of the Valsalva maneuver. Mutation
screening was also performed for a supplementary cohort of 90
probands with adult-onset familial DCM from St. Vincent’s Hos-
pital or referred by collaborating physicians.

DNA Sequencing and Transcriptional Assays

TBX20 coding exons were amplified by PCR from 100 ng of leu-
kocyte DNA, were purified with PCR Cleanup Plates (Millipore),
and were sequenced using Big Dye Terminator v3.1 kit (Applied
Biosystems) and ABI PRISM 3700 DNA Analyzer. Transfection as-
says and frog-embryo mRNA microinjection assays were per-
formed as described elsewhere,16 except that, in the 293T-cell as-
say exploring Tbx20c function, Tbx20c plasmids were cotrans-
fected with an expression plasmid encoding Sumo-1 (GenBank
accession number NM_009460),22 which stimulated activity, al-
though it is not known whether Tbx20 itself is sumoylated. Tran-
scription data presented represent experiments performed in trip-
licate. Statistical analysis was performed using Student’s two-
tailed t-test.
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Table 1. Patient Cohort Details

Phenotype(s)

ASD Onlya ASD and Other CHDb VSD Only VSD and Other CHDc Other CHDd

No. of Subjects:
Total 151 24 41 22 115
Male 53 16 23 10 70
With positive family historye 20 5 4 2 8
With AV conduction blockf 5 3 0 1 0
With atrial fibrillation 8 0 0 0 0
With LV dysfunction 5g 1h 0 0 0

Mean (range) age at enrollment, in years 26 (0–79) 12 (.2–62) 6 (0–68) 6 (0–59) 4 (0–16)

a Three adults had mitral valve prolapse.
b Including sinus venosus ASD ( ; all others are secundum ASD); partial anomalous pulmonary venous connection ( ); left SVC (n p 13 n p 6 n p

); valvular lesions ( ), including one example of supravalvar mitral ring; and coarctation of the aorta ( ).2 n p 5 n p 1
c Including ASD ( ), left SVC ( ), aortic valve abnormalities ( ), coarctation of the aorta ( ), double-chambered right ventriclen p 7 n p 5 n p 5 n p 4

( ), pulmonary stenosis ( ), patent ductus arteriosus ( ), and partial anomalous venous connection ( ). One subject had mitraln p 2 n p 1 n p 1 n p 1
valve prolapse, and one had supravalvar mitral ring.

d Including outflow tract lesions ( ), atrioventricular septal defect and variants ( ), functional single ventricle ( , including 2n p 75 n p 18 n p 17
with mitral valve atresia), heterotaxy ( ), cor triatriatum ( ), and Ebstein anomaly ( ).n p 2 n p 1 n p 1

e Positive family history was defined as at least one first-degree relative affected with CHD. Thirty-seven subjects were found to have syndromes
known to be associated with CHD, including trisomy 21 ( ) and 22q microdeletions ( ). However, only two subjects with a positiven p 20 n p 12
family history were from this group.

f First-degree or complete heart block. Complete and partial right bundle-branch block were not included in this group. Two subjects with ASD
had left bundle-branch block.

g All subjects were aged 155 years. Subjects had normal LV size and contractility but impaired diastolic relaxation ( ) or impaired systolicn p 2
function with ( ) or without ( ) LV dilation.n p 2 n p 1

h This patient (family 2, individual III:4) was positive for TBX20 mutation Q195X.

Molecular Modeling

A homology model of the T-box from mouse Tbx20 bound to
DNA was produced using the program SWISS-MODEL, with use
of the crystal structure of the T-box from human TBX3 (Protein
Data Bank ID 1h6f)23 as template. The model structure was not
subjected to energy minimization. Graphics were generated using
PyMol and Adobe Illustrator CS2.

Purification of Tbx20 T-Boxes

Wild-type (WT) and I152M and Q195X Tbx20 proteins were pre-
pared as glutathione S-transferase (GST) fusion proteins with use
of a pGEX-4T-2 protein–expression vector in Escherichia coli BL21
(DE3) Rosetta cells (Novagen and Merck). Protein expression was
induced by the addition of 0.4 mM isopropyl b-D-1-thiogalacto-
pyranoside at OD600 of 0.6 and was continued at 22�C for 18 h.
Cell pellets were resuspended in 20 mM 3-(N-Morpholino)pro-
pane sulphonic acid (MOPS) (pH 7.5), 150 mM NaCl, and 1 mM
dithiothreitol (DTT) containing Complete Protease Inhibitors
(Roche). Cells were lysed by sonication and then were treated
with DNase I (Roche). Cell debris and inclusion bodies removed
after centrifugation were solubilized in 8 M urea and were ana-
lyzed by SDS PAGE. DNA was precipitated from the lysate super-
natant by addition of polyethyleneimine (0.1%), and fusion pro-
teins were purified from the supernatant by affinity chromatog-
raphy (Glutathione Sepharose 4B [Amersham Biosciences]) ac-
cording to the manufacturer’s protocols. T-box domains were
cleaved from GST on beads with thrombin and were further pu-
rified by cation-exchange chromatography on a UnoS.1 column
(BioRad) running in 20 mM MOPS (pH 7.5), 1 mM DTT, and 10
mM ZnSO4, with a gradient of NaCl to remove any nucleic acids
that remained associated with the protein throughout the affinity
purification and cleavage steps. Q195X Tbx20 was unstable and
formed inclusion bodies.

Biophysical Methods

Circular dichroism (CD) spectropolarimetry data were recorded
on a Jasco J-720 spectropolarimeter equipped with a Neslab RTE-
111 temperature controller. Far-UV CD spectra were collected at
20�C with a 1-mm cuvette, over the wavelength range 190–250
nm and with a speed of 20 nm/min, resolution of 0.5 nm, band
width of 1 nm, and response time of 1 s. Final spectra were the
average of three scans, corrected by subtracting a buffer-only spec-
trum. Protein concentration was estimated from A280, with use of
a molar extinction coefficient of 21,430 M�1cm�1 (calculated from
sequence data). Melting temperature (MT) was taken as the mid-
point in the thermal denaturation curve, determined as the loss
in secondary structure in the far-UV CD spectrum. Thermal data
were collected at 215 nm, heating from 20�C to 80�C at 1�C per
min, with a step size of 0.5�C, band width of 1 nm, and response
time of 1 s. Protein concentration was 0.32 mg/ml for the far-UV
spectra and 0.57 mg/ml for the thermal melt experiments, in 10
mM sodium phosphate and 150 mM NaF (pH 7.4). The MT was
determined by fitting data to a sigmoidal function with use of
the nonlinear least-squares fitter in MicroCal Origin. Surface plas-
mon-resonance analysis was performed on a Biacore 2000 SPR.
A biotinylated double-stranded oligonucleotide corresponding
to the T-half site16 was immobilized on a streptavidin-coated SA
sensor chip (Biacore). Single-stranded oligonucleotides (5′-biotin-
ctcttataggtgtgaaaaccgtg-3′ and 5′-cacggttttcacacctata-3′) were an-
nealed before binding. The buffer used for all experiments was
50 mM MOPS, 150 mM NaCl, 1 mM DTT, 0.005% P20 surfactant,
and 10 mM ZnSO4. The chip was pretreated according to the man-
ufacturer’s instructions, with conditioning solution ( ml in-3 # 100
jections at 50 ml/min with 50 mM NaOH and 1 M NaCl). Each
biotinylated double-stranded oligonucleotide was diluted to 2 nM
in 50 mM MOPS (pH 7.4), 500 mM NaCl, 1 mM DTT, 0.005% (v/
v) P20 surfactant, and 10 mM ZnSO4 and was injected into one
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Figure 1. Pedigrees of families with TBX20 mutations, with relevant sequence profiles of probands’ DNA and unaffected control
individuals. The arrow under the sequence indicates the detected single-nucleotide change. In family 2, individual II:4, the only
surviving unaffected member who was the descendent of an affected parent (and therefore a likely carrier), was not available for
genotyping. For two deceased members (II:5 and II:7), there were no records available for the cause of death, although anecdotal
evidence suggests a cardiac cause for both.

of the sensor-chip channels at a flow rate of 10 ml/min for 10
min, resulting in an immobilization level of ∼600 response units
(RUs). The sensor chip was then washed with 50 mM MOPS, 150
mM NaCl, 1 mM DTT, 0.005% P20 surfactant, and 10 mM ZnSO4.
Upstream, unmodified channel surfaces were used for reference
subtraction. Kinetic measurements were performed at 20�C with
a KINJECT protocol and a flow rate of 30 ml/min in the same
buffer, with increasing protein concentrations across the range
0.1–10 mM. Ninety microliters of each protein concentration was
injected and, at the end of the association phase, was replaced
with continuous buffer flow, to monitor dissociation kinetics.
WT and mutant protein samples were sampled alternately, zero-
concentration samples were included for double referencing, and
three cycles were performed. Data analysis was performed with
the BIA evaluation software. For one-dimensional 1H nuclear
magnetic resonance (NMR) spectra of WT and mutant Tbx20 T-
box domains, proteins were prepared at 9.8 mg/ml (WT) and 1.3
mg/ml (I152M) in 50 mM MOPS (pH 7.5), 150 mM NaCl, 1 mM
DTT, 10 mM ZnSO4 containing 10% D2O, and 20 mM dimethyl-
silapentane-5-sulfonic acid. Spectra were acquired at 293 K on a
Bruker DRX-600 spectrometer and were processed using Topspin
(Bruker).

TBX20 Gene

A TBX20 pseudogene covering exons 5 and 6 exists on human
chromosome 12. This shows 98.4% homology to cognate regions
on chromosome 7. Exon 5 and 6 primers used for mutation
screening were specific to TBX20 on chromosome 7. Coding-exon
PCR primers are available on request.

Results

We screened for mutations in TBX20 coding exons by
direct DNA sequencing in 352 probands with CHD, 175
with ASD, 63 with VSD, and 115 with some other form
of cardiac structural anomaly (table 1). Probands were re-
cruited without reference to family history of CHD. How-
ever, 39 individuals (11%) had at least one first-degree
relative with CHD. CHD in most subjects was diagnosed
during the newborn period or during early childhood,
with 23% diagnosed during adulthood. The majority of
subjects were white (76%); the remainder were Asian (in-
cluding Indian and Pakistani, 11%), Pacific Islander (Pol-
ynesian and Melanesian, 6%), Middle Eastern (5%), or Aus-
tralian Aboriginal (2%). Unique TBX20 mutations with-
in exons encoding the T-box DNA-binding domain were
found in two white probands with ASD, each with a pos-
itive family history of CHD.

Family 1 carried the missense change TBX20 I152M
(456CrG) (figs. 1, 2a, and 2b), which segregated with dis-
ease over 3 generations. The proband (III:1) had ASD,
which was corrected surgically in early childhood. Her
grandmother (I:2) had a small VSD, and her mother (II:
2) had a large PFO with a permanent left-to-right blood
shunt. Cardiac valves and left ventricular (LV) function
were normal in all individuals. The I152M change was
absent in 1450 white controls.

Family 2 carried the change TBX20 Q195X (583CrT),
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Figure 2. Structural impact of TBX20 mutations illustrated with a model of the TBX20 T-box (blue ribbon) bound to DNA (gray surface)
on the basis of the x-ray crystal structure of the TBX3 domain.23 a, Space-filling representation of affected residues showing Ile152
(yellow) located in the core of the T-box and Thr209 (green) at the DNA-interaction face. b, Side chain of Ile152, packed within the
hydrophobic core. The extra length and possibility of additional rotation within the side chain of methionine may disrupt the hydrophobic
packing in this region and destabilize the structure. c, Q195X, which results in truncation of the TBX20 protein within the T-box. The
region of the T-box expressed in the Q195X variant is shown in blue, with the remainder of the domain shown in gray. d, Thr209,
involved in a stabilizing network of H bonds with residues that direct contact DNA. The loss of these H bonds would be expected to
reduce stability of the chain in this region and have a significant effect on DNA binding.

which truncates TBX20 within the T-box DNA-binding
domain16 (fig. 2c). Because of the ancient and conserved
nature of the T-box fold and its established role as a se-
quence-specific DNA-binding domain,24 the truncated pro-
tein will most certainly lack DNA-binding ability and is
likely to be functionally null. The change was present in
the two living affected individuals in family 2 (fig. 1) but
was absent in 1300 white controls. Six members of the
family, including four deceased members, had a significant
cardiac history. For two additional deceased members, there
were no records of the cause of death, but anecdotal evi-
dence suggested a cardiac cause for both. The proband (III:
4) had a small ASD and mild coarctation of the aorta. At
age 31 years, he underwent percutaneous device closure
of the ASD. He also had mild-to-moderate pulmonary hy-

pertension diagnosed on cardiac catheterization at ages 7
mo and 6 years, although this resolved. Reduced LV func-
tion was also identified by echocardiography and cardiac
catheterization in childhood, and this persisted into adult-
hood—at age 32 years, echocardiogram demonstrated a
mildly dilated LV with mild global impairment of systolic
function. Individual I:2 had unspecified mitral valve ab-
normalities necessitating surgical replacement. Individual
II:2 had marked mitral valve prolapse with mild regurgi-
tation, DCM, and apicolateral hypertrophy. Individual II:
6 was scheduled for repair of a septal defect when she died
in a vehicle accident during her 20s. Individual III:2 died
at age 11 mo because of congenital mitral valve stenosis
associated with a small LV and endocardial fibroelastosis.
Individual III:3 died at age 7 years of right heart failure
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due to severe primary pulmonary hypertension. Cardiac
catheterization of this individual revealed no structural
lesion.

The presence of DCM in two individuals in family 2, as
well as in Tbx20�/� mice in the absence of significant struc-
tural malformations,17 strongly suggests that heterozygos-
ity for TBX20 loss-of-function mutations leads to a pre-
disposition to adult-onset cardiomyopathy (see the “Dis-
cussion” section). However, we failed to detect any addi-
tional TBX20 mutations in 90 probands with familial DCM.

Among subjects with CHD, we detected one additional
missense change, TBX20 T209I (626CrT), in a single white
individual with ASD; this change was absent in 1300 white
controls. The proband’s family had a positive history of
CHD (data not shown). However, the T209I change alone
cannot account for the pathogenesis seen in this family,
since one family member had ASD but was genotype neg-
ative. In addition, one member was genotype positive but
phenotype negative, and the proband, in addition to hav-
ing ASD, also had Klippel-Feil syndrome (MIM 118100),
which can be associated with cardiac anomalies.

We introduced the observed changes in TBX20 into the
mouse Tbx20 cDNA and compared transcriptional activity
of the variant and WT Tbx20 proteins in cultured cell lines
and in Xenopus laevis embryos after microinjection of syn-
thetic mRNAs (fig. 3). In previous in vitro studies, the long
isoform of Tbx20 (Tbx20a) was shown to have weak tran-
scriptional activity when assayed alone, because of the
dominant effects of its C-terminal trans-repression do-
main.16 The short Tbx20c isoform, which lacks this do-
main, has somewhat higher activity.16 However, a strong
latent transcriptional activity in Tbx20 is revealed when
Tbx20a is allowed to collaborate with interacting cardiac
transcription factors Nkx2-5 and Gata4, and Tbx20a has
strong dominant activities in the frog embryo overexpres-
sion assays.16

In experiments in which the Tbx20c vector was trans-
fected into cultured cells, we also cotransfected a vector
expressing Sumo-1,22 which enhanced activity of Tbx20c
approximately twofold. As in previous studies,16 activity
was assessed using a luciferase reporter plasmid driven by
a proximal cis-regulatory element of the Nppa gene (Gen-
Bank accession number NM_008725), a known direct tar-
get of cardiac T-box factors.25 The activity of Tbx20c I152M,
seen in family 1, was significantly reduced compared with
WT Tbx20c ( ) (fig. 4a). However, activity was nor-P p .05
mal or slightly elevated compared with WT protein in the
presence of Nkx2-5 and Gata4 ( ) (fig. 3b). In theP p .05
mRNA-overexpression assay in whole Xenopus embryos,16

Tbx20a I152M was as potent as WT protein in disturbing
gastrulation movements (fig. 3c), demonstrating its nor-
mal ability to interact with and disrupt the activity of
endogenous T-box and/or Gata factors that regulate gas-
trulation.16 It also had a normal or elevated ability to in-
duce ectopically the cardiomyocyte lineage in Xenopus
gastrula ventral-marginal-zone explants, assessed by the

activation of the endogenous cardiac a-actin gene (Actc1
[GenBank accession number NM_009608]) ( ) (fig.P p .04
3d and 3e). We conclude that Tbx20 I152M is functionally
deficient when assayed in isolation, although this deficit
can be masked in overexpression assays that depend on
associations and/or synergies with other transcription fac-
tors (see the “Discussion” section).

To explore the functional deficit of TBX20 I152M fur-
ther, we assessed the structural and biophysical conse-
quences of the change in the context of the purified T-
box domain. I152 is a highly conserved amino acid within
the T-box family; the only substitution in Tbx20 ortho-
logues is valine. We constructed a model of the mouse
Tbx20 T-box (see the “Material and Methods” section) on
the basis of the known crystal structure of the human
TBX3 domain.23 In this model, the side chain of I152 is
located in the domain’s core, packed against other hydro-
phobic residues (fig. 2a and 2b). Substitution of isoleucine
for methionine in a similar context in other proteins is
known to be destabilizing.26,27 We determined the far-UV
CD spectra of bacterially expressed WT and mutant Tbx20
T-boxes. The WT protein displayed minima at 207 and
217 nm (fig. 4a), demonstrating a mainly b-sheet structure
for the Tbx20 T-box, as in the determined crystallographic
structures of other T-box domains.28,29 In the I152M spec-
trum, intensity differences in the two minima denoted
some structural alteration. However, the local maximum
at 232 nm, attributable to the packing of aromatic side
chains distributed throughout the Tbx20 T-box, was un-
affected in the I152M spectrum, suggesting that the over-
all structural change was relatively small.

We next determined the one-dimensional 1H NMR spec-
tra and thermal stability profiles of WT and I152M T-boxes
(fig. 4b). The narrow lines and good resonance dispersion
in the NMR spectra indicated well-ordered tertiary struc-
tures, although differences in upfield-shifted methyl res-
onances confirmed that I152M induced some reordering
of the hydrophobic core. The MT of the WT T-box was
51�C, similar to that of other DNA-binding domains.30,31

However, the I152M T-box had an MT of only 48�C (fig.
4c), indicating a significant degree of thermal instability
and suggesting that, in vivo, TBX20 I152M populates an
unfolded conformation more frequently than does the
WT protein. We also explored the kinetics of DNA binding
of WT and mutant T-boxes, using surface plasmon reso-
nance. Comparative data showed that the I152M T-box
bound to a high-affinity Tbx20 DNA-binding site (T site)
with a fourfold lower affinity (�SD) than WT protein
( M�1 vs. M�1)6K p 0.42 � 0.005 # 10 1.58 � 0.02 # 10a

(fig. 3d), an effect due entirely to a diminished DNA-bind-
ing on rate ( M�1s�1 vs.4k p 1.79 � 0.02 # 10 6.96 �a

M�1s�1; s�1 vs.40.07 # 10 k p 0.0439 � 0.0003 0.0424 �d

s�1).0.0002
Tbx20 Q195X, seen in family 2, showed markedly re-

duced transcriptional activity for Nppa in transfection as-
says (fig. 3a and 3b) and lacked any ability to disrupt gas-



Figure 3. Functional analysis of TBX20 mutations. a, 293T cell–transfection assay measuring activation of the Nppa promoter in the
presence of Tbx20c (short isoform lacking C-terminal trans activation and trans repression domains).16 b, COS cell–transfection assay
measuring activation of the Nppa promoter in the presence of Tbx20a (full-length isoform), Nkx2-5, and Gata4, alone or in combination.16

Synergistic activation is seen only in the presence of all factors. c, Ability of WT and mutant Tbx20a proteins to disturb gastrulation
movements in Xenopus laevis embryos after microinjection of respective mRNAs (1 ng) into fertilized eggs.16 WT protein likely disturbs
gastrulation by dysregulating the function of endogenous T-box proteins, including brachyury and eomesodermin, and/or Gata factors,
involved in mesoderm and endoderm formation. WT, I152M, and T209I are potent inhibitors, whereas Q195X is inactive. d, Comparison
of the ability of Tbx20a WT and mutant proteins to activate expression of the endogenous Actc1 gene (encoding cardiac a-actin) in
frog ventral-marginal-zone (VMZ) explants removed from gastrula embryos after microinjection of the indicated mRNAs into ventral cells
of four-cell–stage embryos.16 Amounts of injected mRNA are indicated. Control tissue was the dorsal marginal zone (DMZ) that includes
cardiac tissue. The histogram indicates normalized Actc1 levels, as determined by quantitative RT-PCR, with statistical significance (P)
of indicated comparisons. e, Western blot (WB) showing Tbx20a protein expressed from injected mRNAs used in panel d, relative to
levels of tubulin. Tbx20a proteins are linked to a C-terminal hemogluttinin (HA) epitope tag and are detected with anti-HA antibody,
except for Tbx20a-Q195X, which lacks the tag and is detected with an anti-Tbx20 antibody.16
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Figure 4. The I152M mutation, which affects the structure of the TBX20 T-box and its affinity for DNA. a, Far-UV CD spectra from WT
(solid line) and I152M (dotted line). The spectra are broadly similar, although alterations to the two minima indicate some change to
structure. b, 1H NMR spectra from WT and I152M T-boxes, which exhibit narrow lines and good resonance dispersion, confirming that
the two domains are folded, with defined tertiary structure. The small amount of reordering within the hydrophobic core of the I152M
domain is reflected in the differences in methyl resonances within the up-field region of the spectra (0.5 to �0.5 ppm). c, Thermal
denaturation of Tbx20 WT and I152M T-boxes, followed as a function of secondary structure content, which demonstrates that the
I152M mutation destabilizes the domain. The midpoint of thermal denaturation is reduced by ∼3�C, relative to the WT domain. d,
Surface plasmon-resonance profiles of the binding of WT and I152M T-boxes to the T-half site DNA sequence, which indicate that the
mutation reduces the on rate for the T site by fourfold but does not reduce the off rate.

trulation movements or to induce the cardiac lineage in
frog assays (fig. 3c–3e). Bacterially expressed protein was
unstable.

The Tbx20 T209I change seen in the family 3 did not
segregate with disease in the proband’s family. Nonethe-
less, it may be a deleterious allele. T209 is a highly con-
served amino acid that lies in the T-box at the DNA in-
terface (fig. 2a), and its polar side chains are involved in
H-bonding networks that stabilize residues contacting DNA
(fig. 2d). Tbx20 T209I showed reduced transcriptional ac-
tivity when assayed alone, although not in the more com-
plex assays (fig. 3a–3e), and the mutant T-box was unstable
when expressed in bacteria, precipitating in inclusion bod-
ies, strongly suggesting significant structural alteration.

Discussion

We have identified unique TBX20 mutations in two white
CHD-affected families. Neither mutation was found in
1300 whidete controls. The missense mutation, I152M
(456CrG), occurred in a highly conserved amino acid in
the T-box DNA-binding domain, and biophysical studies
of the purified bacterially expressed T-box domain con-
firmed direct effects of this mutation on tertiary protein

structure, thermal stability, and DNA binding. The most
compelling evidence of the deleterious nature of the allele
was the fourfold reduction in DNA-binding “on” rate. In
vivo, the binary switch functions of signal-dependent de-
velopmental transcription factors are regulated acutely by
opposing repressive activities and transcription factor de-
gradation.32,33 The strongly reduced DNA-binding on rate
is highly likely to have functional consequences for the
timing of activation of cardiac developmental programs
or their stability and efficacy. The compromised on rate
is consistent with the observed structural instability of the
Tbx20 T-box domain. When bound to DNA, the structure
may be stabilized, and this could account for the lack of
change in DNA-binding “off” rate. This mutation also seg-
regated with cardiac septal pathology in family 1 over 3
generations, providing strong evidence of pathogenicity.
Transcriptional activity of Tbx20 I152M was reduced by
∼40% when assayed in the context of the short Tbx20c
isoform, although there was no change in overexpression
assays that relied on synergistic interactions with other
transcription factors. We conclude, therefore, that I152M
has reduced function, although it is clearly not null. This
is consistent with the presence of septal anomalies only
in the three genotype-positive members of family 1. Al-
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though caution should be exercised in equating the se-
verity of gene functional changes with severity of mor-
phological or clinical phenotype, the atrial and ventricular
septa do seem particularly vulnerable to genetic pertur-
bation—they are the most common structural abnormal-
ities of the heart and occur most prevalently in the ab-
sence of confounding malformations.

The other mutation detected, Q195X (583CrT), leads
to the introduction of a stop codon within one of the
exons encoding the T-box DNA-binding domain. This pro-
duces a TBX20 protein that is truncated within the T-box
and that lacks the potent trans activation and trans re-
pression domains present in the C terminus.16 Although
we could not assess DNA binding of the truncated T-box
directly because of the instability of the bacterially ex-
pressed protein, on the basis of our detailed understanding
of T-box structure from crystallographic studies,28,29 the
mutant protein will most certainly lack DNA-binding abil-
ity, and the functional assays confirm that it is severely
compromised and most likely effectively null. Several de-
ceased members of family 2 had diverse cardiac pathol-
ogies, and both of the affected members alive at the time
of the study were genotype positive. Given the nature of
the mutation, we can anticipate that the diverse spectrum
of defects seen in this family is representative, at least in
part, of TBX20 haploinsufficiency, although dominant-
negative activities for the mutant protein cannot be dis-
counted. The range of phenotypes is consistent with ex-
pression of Tbx20 in myocardium, as well as endocardial
cushion tissue from which heart valves and atrioventric-
ular septum are derived,16 and the catastrophic effects of
Tbx20 knockdown in mice.17–20

It is noteworthy that members of family 2 were much
more severely affected than were heterozygous Tbx20-
null mice, which showed only hemodynamically insig-
nificant malformations of the interatrial septum, an in-
crease in PFO prevalence, and genetic susceptibility to
ASD.17 A difference in phenotypic spectrum between hu-
man and mouse is also evident for NKX2-5 mutations,34–

36 and our analysis of different mouse models of Nkx2-5
deficiency suggests that modifier genes subtly affecting the
levels of NKX2-5 protein will have a significant influence
on clinical outcome in humans.36–38

A prominent feature in patients with the Q195X mu-
tation was mitral valve structural malformations, and it is
noteworthy that both mitral valve stenosis and prolapse
were observed in different members of family 2. Congen-
ital mitral valve stenosis is a rare but serious malformation,
generally associated with poor prognosis, whereas mitral
valve prolapse is more common and is usually detected
later in life. Indications for intervention in mitral valve
prolapse relate more to the degree of mitral valve regur-
gitation than to the degree of the structural malformation
itself. Whereas the respective etiologies of these types of
mitral valve pathology are unknown, our data suggest that
both can arise from loss of TBX20 function. Mouse Tbx20
is expressed strongly in cells of the endocardial cushions

and, subsequently, the cardiac valves.16,17 Consistent with
a functional role for TBX20 in this tissue, mouse embryos
with a partial RNAi-mediated knockdown of Tbx20 expres-
sion show severely hypoplastic and/or immature atrioven-
tricular valves.20 In chick endocardial-cushion explants,
Tbx20 positively controls matrix metalloproteinase genes
involved in endothelial-cell migration into the cushion
matrix while repressing matrix genes involved in the latter
stages of valve remodeling.21 Therefore, disturbance of a
genetic program for atrioventricular valve induction and
morphogenesis directly controlled by TBX20 is likely to
underlie valve defects in TBX20 mutation–positive pa-
tients and mice.

DCM was present with structural CHD in two individ-
uals with the Q195X mutation. Although one must be
aware that this could reflect pathological decompensation
after functional adaptation to structural defects, it is note-
worthy that we found mild DCM without significant struc-
tural defects in adult Tbx20�/� mice,17 suggesting the al-
ternative or additional explanation that the TBX20 mu-
tation provides a sensitized developmental template for
adult-onset DCM. Consistent with this notion, in patient
II:2 (family 2), there was long-standing LV dilation and
dysfunction that was disproportional to the severity of
mitral valve regurgitation. Heart failure is also seen in
some patients carrying NKX2-5 mutations, years after cor-
rection of structural CHD,34,39 and DCM is present even
at fetal stages in a mouse model of Nkx2-5 deficiency.38

Careful consideration of the prevalence and age at onset
of DCM in future studies of CHD-affected families, in-
cluding TBX20 mutation–positive families, is warranted,
since this has important implications for patient follow-
up. Familial DCM shows a highly heterogeneous causa-
tion, with most mutations occurring in genes encoding
myofilament, cytoskeletal, energy, and Ca2�-handling pro-
teins.40 However, mutation of the transcriptional coacti-
vator, EYA4 (MIM 603550), causes familial DCM and sen-
sorineural hearing loss.41 A possible role for cardiac de-
velopmental transcription factor mutations in adult-onset
DCM suggests that screening of patient DNA could be
broadened to include such genes. However, TBX20 muta-
tions are not a common cause of adult-onset cardiac dys-
function in the familial setting, since no additional TBX20
mutations were found after screening 90 probands with
familial DCM. The participation of TBX20 mutations in
idiopathic DCM remains to be explored.

The presence of primary pulmonary hypertension in
one member (III:3) of family 2 is also of interest. Most
primary pulmonary hypertension is idiopathic and, on
histological evidence, is generally regarded to arise at the
level of precapillary arterioles. Histochemical examination
of the expression of b-galactosidase from the knockin
Tbx20 lacZ allele in heterozygous mice revealed strong
staining in the pulmonary venous system, although stain-
ing in the pulmonary arterial system was restricted to its
proximal portion, in continuity with right ventricular my-
ocardium (data not shown). This evidence raises the pos-



www.ajhg.org The American Journal of Human Genetics Volume 81 August 2007 289

sibility that primary pulmonary hypertension in individ-
ual III:3 in family 2 is a comorbidity unrelated to the
TBX20 mutation, although this should be monitored in
future TBX20 mutation–positive families.

The third change detected in this study, T209I, did not
segregate with pathology in the proband’s family. Where-
as transcriptional defects and instability in bacteria hint
at a deleterious function for this allele, its contribution to
CHD is difficult to assess from analysis of this family.

T-box genes play critical roles in heart development.6

To our knowledge, our study establishes the first link be-
tween TBX20 mutation and human disease. Mutations
were present in ∼0.6% (2 of 352) of CHD-affected patients
screened, a prevalence similar to that for NKX2-5 muta-
tions.4,5 However, among patients showing a family his-
tory of CHD in this study, ∼5% (2 of 39) carried a TBX20
mutation. If this prevalence is confirmed by additional
studies, it is sufficient to warrant genetic screening for
TBX20 mutations in CHD-affected families.

There is increasing awareness that the clinical CHD
spectrum due to distinct mutations in the same gene—or
mutations in different genes acting in a conserved path-
way—can vary enormously within and among families.42,

43 Conversely, defects in different cardiac developmental
processes can give rise to similar forms of CHD.37,44,45 In
TBX20 mutation–positive families, there is the additional
complexity that TBX20 is essential for both myogenic and
valvular development and that mutations are associated
with myocardial dysfunction and DCM. Understanding
the connections among heart developmental pathways,
CHD, and cardiomyopathy remains a difficult challenge.1

An informed perspective in this area bears significantly on
diagnosis, counseling, and long-term follow-up of CHD-
affected families. The evident complexities in CHD causa-
tion and phenotypic manifestation may also significantly
affect how genomewide screening efforts to discover mu-
tations underlying the more common nonfamilial forms
of CHD are designed and implemented.

Acknowledgments

This work was supported by grants from the National Health and
Medical Research Council (NHMRC) (354400), National Heart
Foundation of Australia (NHF), National Heart Lung and Blood
Institute, National Institutes of Health (R01HL68885-01), Sylvia
and Charles Viertel Charitable Foundation, St. Vincent’s Clinic
Foundation, Rebecca Cooper Foundation, Sydney Heart Valve
Bank, and Sydney Children’s Hospital Foundation. We thank par-
ticipating family members; Olivia Baddeley and Haley Crotty, for
data collection; and Owen Miller, Kevin Alford, David Amos, Terry
Campbell, Gerald Carroll, Tim Carruthers, Mark Cooper, Richard
Cranswick, Lloyd Davis, Deborah Hayes, Peter Hayes, Owen Jones,
Dennis Kuchar, Lincoln Lee, Drew Mumford, Lynne Pressley, Da-
vid Richmond, Shiva Roy, Neville Sammel, Jonathan Silberberg,
Andrew Sindone, Charles Thorburn, and John Yiannikas, for pa-
tient referrals. E.K. was the recipient of an NHF scholarship, D.W.
is an NHF Career Development Fellow, and M.S. is an NHMRC
R. D. Wright Career Development Fellow.

Web Resources

Accession numbers and URLs for data presented herein are as
follows:

Ensembl Genome Browser, http://www.ensembl.org/index.html
(for TBX20 [accession number ENSG00000164532])

GenBank, http://www.ncbi.nlm.nih.gov/Genbank/ (for Fgf8
[accession number NM_010205], Tbx2 [accession number
NM_009324], Tbx3 [accession numbers NM_198052 and
NM_011535]), Tbx18 [accession number NM_023814], Tbx20
[accession number NM_020496], Nkx2-5 [accession number
NM_008700], Gata4 [accession number DQ436915], Gata5 [ac-
cession number NM_008093]), Tbx5 [accession number NM_
011537], Sumo-1 [accession number NM_009460], Nppa [ac-
cession number NM_008725], and Actc1 [accession number
NM_009608])

Online Mendelian Inheritance in Man (OMIM), http://www.ncbi
.nlm.nih.gov/Omim/ (for NKX2-5, GATA4, TBX5, TBX1, 22q11
deletion syndrome, Holt-Oram syndrome, TBX3, TBX20, Klip-
pel-Feil syndrome, and EYA4)

Protein Data Bank, http://www.rcsb.org/pdb/ (for human TBX3
[ID 1h6f])

PyMol, http://pymol.sourceforge.net/ (for the PyMOL Molecular
Graphics System)

SWISS-MODEL, http://swissmodel.expasy.org/

References

1. Gruber PJ, Epstein JA (2004) Development gone awry: con-
genital heart disease. Circ Res 94:273–283

2. Harvey RP (1996) NK-2 homeobox genes and heart develop-
ment. Dev Biol 178:203–216

3. Cripps RM, Olson E (2002) Control of cardiac development
by an evolutionarily conserved transcriptional network. Dev
Biol 246:14–28

4. Elliott DA, Kirk E, Yeoh T, Chander S, McKenzie F, Taylor P,
Grossfeld P, Fatkin D, Jones O, Hayes P, et al (2003) Cardiac
homeobox gene NKX2-5 mutations and congenital heart dis-
ease: associations with atrial septal defect and hyperplastic
left heart syndrome. J Am Coll Cardiol 41:2072–2076

5. McElhinney DB, Geiger E, Blinder J, Benson W, Goldmuntz
E (2003) NKX2.5 mutations in patients with congenital heart
disease. J Am Coll Cardiol 42:1650–1655

6. Stennard FA, Harvey RP (2005) T-box transcription factors
and their roles in regulatory hierarchies in the developing
heart. Development 132:4897–4910

7. Yamagishi H, Srivastava D (2003) Unravelling the genetic and
developmental mysteries of 22q11 deletion syndrome.Trends
Mol Med 9:383–389

8. Buckingham ME, Meilhac S, Zaffran S (2005) Building the
mammalian heart from two sources of myocardial cells. Nat
Rev Genet 6:826–835

9. Basson CT, Bachinsky DR, Lin RC, Levi T, Elkins JA, Soults J,
Grayzel D, Kroumpouzou E, Traill TA, Leblanc-Straceski J, et
al (1997) Mutations in human Tbx5 cause limb and cardiac
malformation in Holt-Oram syndrome. Nat Genet 15:30–35

10. Li QY, Newbury-Ecob RA, Terrett JA, Wilson DI, Curtis ARJ,
Yi CH, Gebuhr T, Bullen PJ, Robson SC, Strachan T, et al
(1997) Holt-Oram syndrome is caused by mutations in TBX5,
a member of the Brachyury (T) gene family. Nat Genet 15:21–
29



290 The American Journal of Human Genetics Volume 81 August 2007 www.ajhg.org

11. Christoffels VM, Mommersteeg MT, Trowe MO, Prall OWJ,
de Gier-de Vries C, Soufan AT, Bussen M, Schuster-Gossler K,
Harvey RP, Moorman AF, et al (2006) Formation of the venous
pole of the heart from an Nkx2-5-negative precursor popu-
lation requires Tbx18. Circ Res 98:1555–1563

12. Bamshad M, Lin RC, Law DJ, Watkins WS, Krakowiak PA,
Moore ME, Franceschini P, Lala R, Holmes LB, Gebuhr TC, et
al (1997) Mutations in human TBX3 alter limb apocrine and
genital development in ulnar-mammary syndrome. Nat Ge-
net 16:311–315

13. Zaffran S, Reim I, Qian L, Lo PC, Bodmer R, Frasch M (2006)
Cardioblast-intrinsic Tinman activity controls proper diver-
sification and differention of myocardial cells in Drosophila.
Development 133:4073–4083

14. Brown DD, Martz SN, Binder O, Goetz SC, Price BMJ, Smith
J, Conlon FL (2005) Tbx5 and Tbx20 act synergistically to
control vertebrate heart morphogenesis. Development 132:
553–563

15. Szeto DP, Griffin KJ, Kimmelman DK (2002) hrT is required
for cardiovascular development in zebrafish. Development
129:5093–5101

16. Stennard FA, Costa MW, Elliott DA, Rankin S, Haast SJP, Lai
D, McDonald LPA, Niederreither K, Dolle P, Bruneau BG, et
al (2003) Cardiac T-box factor Tbx20 directly interacts with
Nkx2-5, GATA4 and GATA5 in regulation of gene expression
in the developing heart. Dev Biol 262:206–224

17. Stennard FA, Costa MW, Lai D, Biben C, Furtado M, Solloway
MJ, McCulley DJ, Leimena C, Preis JI, Dunwoodie SL, et al
(2005) Murine T-box transcription factor Tbx20 acts as a re-
pressor during heart development, and is essential for adult
heart integrity, function and adaptation. Development 132:
2451–2462

18. Cai CL, Zhou W, Yang L, Bu L, Qyang Y, Zhang X, Li X, Ro-
senfeld MG, Chen J, Evans S (2005) T-box genes coordinate
regional rates of proliferation and regional specification dur-
ing cardiogenesis. Development 132:2475–2487

19. Singh MK, Christoffels VM, Dias JM, Trowe MO, Petry M, Schu-
ster-Gossler K, Burger A, Ericson J, Kispert A (2005) Tbx20 is
essential for cardiac chamber differentiation and repression
of Tbx2. Development 132:2697–2707

20. Takeuchi JJ, Mileikovskaia M, Koshiba-Takeuchi K, Heidt AB,
Mori AD, Arruda EP, Gertsensein M, Georges R, Davidson L,
Mo R, et al (2005) Tbx20 dose-dependently regulates tran-
scription factor networks required for mouse heart and mo-
torneuron development. Development 132:2463–2474

21. Shelton EL, Yutzey KE (2007) Tbx20 regulation of endocardial
cushion proliferation and extracellular matrix gene expres-
sion. Dev Biol 302:376–388

22. Kerscher O, Felberbaum R, Hochstasser M (2006) Modifica-
tion of proteins by ubiquitin and ubiquitin-like proteins. An-
nu Rev Cell Dev Biol 22:159–180

23. Coll M, Seidman JG, Muller CW (2002) Structure of the DNA-
bound T-box domain of human TBX3, a transcription factor
responsible for ulnar-mammary syndrome. Structure 10:343–
356

24. Naiche LA, Harrelson Z, Kelly RG, Papaioannou VE (2005) T-
box genes invertebrate development. Annu Rev Genet 39:
219–239

25. Habets PE, Moorman AF, Clout DE, van Roon MA, Lingbeek
M, van Lohuizen M, Campione M, Christoffels VM (2002)
Cooperative action of Tbx2 and Nkx2.5 inhibits ANF expres-

sion in the atrioventricular canal: implications for cardiac
chamber formation. Genes Dev 16:1234–1246

26. Gassner NC, Baase WA, Matthews BW (1996) A test of the
“jigsaw puzzle” model for protein folding by multiple me-
thionine substitutions within the core of T4 lysozyme. Proc
Natl Acad Sci USA 93:12155–12158

27. Ohmura T, Ueda T, Hashimoto Y, Imoto T (2001) Tolerance
of point substitutions of methionine for isoleucine in hen
egg white lysozyme. Protein Eng 14:421–425

28. Provencher SW, Glockner J (1981) Estimation of globular pro-
tein secondary structure from circular dichroism. Biochem-
istry 20:33–37

29. van Stokkum IH, Spoelder HJ, Bloemendal M, van Grondelle
R, Groen FC (1990) Estimation of protein secondary structure
and error analysis from circular dichroism spectra. Anal Bio-
chem 191:110–118

30. Bullock AN, Henckel J, DeDecker BS, Johnson CM, Nilkolova
PV, Proctor MR, Lange DP, Fersht AR (1997) Thermodynamic
stability of wild-type and mutant p53 core domain. Proc Natl
Acad Sci USA 94:14338–14342

31. Li T, Narhi LO, Wen J, Philo JS, Sitney K, Inoue J, Yamamoto
T, Arakawa T (1998) Interactions between NFkB and its in-
hibitor ikB: biophysical characterization of a NFkB/ikB-a com-
plex. J Protein Chem 17:757–763

32. Barolo S, Posakony JW (2002) Three habits of highly effective
signaling pathways: principles of transcriptional control by
developing cell signalling. Genes Dev 16:1167–1181

33. Kodadek T, Sikder D, Nalley K (2006) Keeping transcriptional
activators under control. Cell 127:261–264

34. Schott J-J, Benson DW, Basson CT, Pease W, Silberach GM,
Moak JP, Maron BJ, Seidman CE, Seidman JG (1998) Con-
genital heart disease caused by mutations in the transcription
factor NKX2-5. Science 281:108–111

35. Jay PY, Harris BS, Maguire CT, Buerger A, Wakimoto H, Tanaka
M, Kuperschmidt S, Roden DM, Schultheiss TM, O’Brien TX,
et al (2004) Nkx2-5 mutation causes anatomic hypoplasia of
the cardiac conduction system. J Clin Invest 113:1130–1137

36. Biben C, Weber R, Kesteven S, Stanley E, McDonald L, Elliott
DA, Barnett L, Koentgen F, Robb L, Feneley M, et al (2000)
Cardiac septal and valvular dysmorphogenesis in mice het-
erozygous for mutations in the homeobox gene Nkx2-5. Circ
Res 87:888–895

37. Prall OWJ, Menon MK, Solloway MJ, Watanabe Y, Zaffran S,
Bajolle F, Biben C, McBride JJ, Robertson BR, Chaulet H, et al
(2007) An Nkx2-5/Bmp2/Smad1 negative feedback loop con-
trols second heart field progenitor specification and prolif-
eration. Cell 128:947–959

38. Elliott DA, Solloway MJ, Wise N, Biben C, Costa MW, Furtado
M, Lange M, Dunwoodie SL, Harvey RP (2006) A tyrosine-
rich domain within homeodomain transcription factorNkx2-
5 is an essential element in the early cardiac transcriptional
regulatory machinery. Development 133:1311–1322

39. Benson DW, Silberbach GM, Kavanaugh-McHugh A, Cottrill
C, Zhang Y, Riggs S, Smalls O, Johnson MC, Watson MS,
Seidman JG, et al (1999) Mutations in the cardiac transcrip-
tion factor Nkx2.5 affect diverse cardiac developmental path-
ways. J Clin Invest 104:1567–1573

40. Fatkin D, Graham RM (2002) Molecular mechanisms of in-
herited cardiomyopathies. Physiol Rev 82:945–980



www.ajhg.org The American Journal of Human Genetics Volume 81 August 2007 291

41. Schonberger J, Wang L, Shin JT, Kim SD, Depreux FF, Zhu H,
Zon L, Pizard A, Kim JB, Macrae CA, et al (2005) Mutation
in the transcriptional coactivator EYA4 causes dilated cardio-
myopathy and sensorineural hearing loss. Nat Genet 37:418–
422

42. Benson DW, Sharkey A, Fatkin D, Lang P, Basson CT, Mc-
Donough B, Strauss AW, Seidman JG, Seidman CE (1998) Re-
duced penetrance, variable expressivity, and genetic hetero-
geneity of familial atrial septal defects. Circulation 97:2043–
2048

43. Garg V, Kathiriya IS, Barnes R, Schluterman MK, King IN,

Butler CA, Rothrock CR, Eapen RS, Hirayama-Yamada K, Joo
K, et al (2003) GATA4 mutations cause human congenital
heart defects and reveal an interaction with TBX5. Nature
424:443–447

44. Bajolle F, Zaffran S, Kelly RG, Hadchouel J, Bonnet D, Brown
NA, Buckingham ME (2006) Rotation of the myocardial wall
of the outflow tract is implicated in the normal positioning
of the great arteries. Circ Res 98:421–428

45. Ward C, Stadt H, Hutson M, Kirby ML (2005) Ablation of the
secondary heart field leads to tetralogy of Fallot and pulmo-
nary atresia. Dev Biol 284:72–83


	Mutations in Cardiac T-Box Factor Gene TBX20 Are Associated with Diverse Cardiac Pathologies, Including Defects of Septation and Valvulogenesis and Cardiomyopathy
	Material and Methods
	Patients and Clinical Details
	DNA Sequencing and Transcriptional Assays
	Molecular Modeling
	Purification of Tbx20 T-Boxes
	Biophysical Methods
	TBX20 Gene

	Results
	Discussion
	Acknowledgments
	References


